Reducing the Number of AD Passes for Computing a Sparse Jacobian Matrix

نویسندگان

  • Shahadat Hossain
  • Trond Steihaug
چکیده

ABSTRACT A reduction in the computational work is possible if we do not require that the nonzeros of a Jacobian matrix be determined directly. If a column or row partition is available, the proposed substitution technique can be used to reduce the number of groups in the partition further. In this chapter, we present a substitution method to determine the structure of sparse Jacobian matrices efficiently using forward, reverse, or a combination of forward and reverse modes of AD. Specifically, if it is true that the difference between the maximum number of nonzeros in a column or row and the number of groups in the corresponding partition is large, then the proposed method can save many AD passes. This assertion is supported by numerical examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal direct determination of sparse Jacobian matrices

It is well known that a sparse Jacobian matrix can be determined with fewer function evaluations or automatic differentiation passes than the number of independent variables of the underlying function. In this paper we show that by grouping together rows into blocks one can reduce this number further. We propose a graph coloring technique for row partitioned Jacobian matrices to efficiently det...

متن کامل

The Efficient Computation of Sparse Jacobian Matrices Using Automatic Differentiation

This paper is concerned with the efficient computation of sparse Jacobian matrices of nonlinear vector maps using automatic differentiation (AD). Specifically, we propose the use of a graph coloring technique, bicoloring, to exploit the sparsity of the Jacobian matrix J and thereby allow for the efficient determination of J using AD software. We analyze both a direct scheme and a substitution p...

متن کامل

Incremental Computation of Taylor Series and System Jacobian in DAE solving using Automatic Differentiation INCREMENTAL COMPUTATION OF TAYLOR SERIES AND SYSTEM JACOBIAN IN DAE SOLVING USING AUTOMATIC DIFFERENTIATION

We propose two efficient automatic differentiation (AD) schemes to compute incrementally Taylor series and System Jacobian for solving differential-algebraic equations (DAEs) by Taylor series. Our schemes are based on topological ordering of a DAE’s computational graph and then partitioning the topologically sorted nodes using structural information obtained from the DAE. Solving a DAE by Taylo...

متن کامل

ADMAT: Automatic differentiation in MATLAB using object oriented methods

Differentiation is one of the fundamental problems in numerical mathematics. The solution of many optimization problems and other applications require knowledge of the gradient, the Jacobian matrix, or the Hessian matrix of a given function. Automatic differentiation (AD) is an upcoming powerful technology for computing the derivatives accurately and fast. ADMAT (Automatic Differentiation for M...

متن کامل

Exploiting Sparsity in Jacobian Computation via Coloring and Automatic Differentiation: A Case Study in a Simulated Moving Bed Process

Using a model from a chromatographic separation process in chemical engineering, we demonstrate that large, sparse Jacobians of fairly complex structures can be computed accurately and efficiently by using automatic differentiation (AD) in combination with a four-step procedure involving matrix compression and de-compression. For the detection of sparsity pattern (step 1), we employ a new opera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000